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Coherent structures of turbulent open-channel flow in the wall region of a channel 
bed were examined quantitatively using experimental data obtained by flow visual- 
ization. Successive pictures of flow patterns in two horizontal cross-sections a t  
different levels near the channel bed were taken, and then were digitized and analysed 
by a computer. 

This method of flow visualization and picture processing enabled us to calculate 
the distributions of the three components of the velocity vectors. The distributions 
of velocities, streamlines, two-dimensional divergence and three components of 
vorticity could be calculated and are displayed as graphical output. I n  our numerical 
analyses, the idea of a two-dimensional correlation coefficient is introduced, through 
which the degree of similarity of turbulence structures can be better estimated than 
with the usual one-dimensional coefficient. Use of the data was based on the premise 
that the essential element in a turbulence structure is vortex motion. 

We propose a conceptual model of turbulence structure in which the elementary 
unit of coherent structure in the buffer layer is presumed to be a horseshoe vortex 
and in which the characteristics of the multiple structure of turbulence are shown 
with respect to the scale, arrangement and generating process of horseshoe vortices 
and longitudinal vortices. Our model clearly explains the generating mechanism 
and mutual relations of low-speed regions, high-speed regions, ejections, sweeps and 
localized free-shear layers. 

1. Introduction 
Experimental research on turbulence structures has been conducted since the 

1940s. In  the 1960s, the development of measuring techniques with hot-wire 
velocimeters and of analysing techniques that use electronic calculators clarified 
various statistical properties of turbulence structures. 

Kline & Runstadler (1959) and Kline et al. (1967) showed using flow visualization 
that the flow structure in the boundary layer is not as disordered as had been 
previously supposed. Corino & Brodkey (1969) made detailed observations of flow 
events containing ejections and sweeps in the wall region of pipe flows. Prior to those 
studies, Hama (see Corrsin 1957) had observed a streamwise streaky structure at the 
wall in a turbulent shear flow. 

After these enlightening studies, various flow-visualization methods were devel- 
oped that showed the coherent structure of a turbulent flow. In  addition, probe 
measurements, in which new techniques such as conditional sampling were intro- 
duced, contributed to the progress made in this field. 
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Review articles describing the development of this reaearch have been published 
by Laufer (1975) and Willmarth (1975), and Cantwell (1981) has recently published 
an extensive, up-to-date detailed review. These authors also suggested the future 
direction that research should take. A review of the published research and our 
previous publications (Utami & Ueno 1979, 1984) have convinced us that the 
elementary unit of coherent structure in a turbulent flow is vortex motion. A 
structural model based on the concept of a horseshoe vortex was presented by 
Theodorsen (1955) to account for the generating process of turbulence. In  the model 
he included the characteristics of the multiple structure of turbulence developed by 
Richardson and others who had done research on similarity laws. 

Since then several analogous models have been proposed, and the existence and 
characteristics of the vortical structure have been discussed. Recently, Head & 
Bandyopadhyay (1981) visualized the cross-section of a boundary-layer flow using 
a sheet of laser light. They observed various cross-sections of vortices and suggested 
that hairpin or horseshoe vortices exist. Their conceptual model indicates more 
clearly the characteristics of the double structure of vortical motion. Moin & Kim 
(1985) used a large-eddy-simulation technique to investigate the existence of hairpin 
vortices in a turbulent flow. 

Measuring techniques have developed along with the conceptual image of a 
turbulence structure, as has the hardware used to make measurements. Kline (1978) 
summarized the advantages and disadvantages of using visual or probe methods. He 
reported that by using the visual method we can easily survey an entire flow field 
and can understand phase relations for a turbulence structure over time and space, 
whereas it is difficult to obtain exact, quantitative data by visualization methods, 
I n  a conclusion, he recommended the simultaneous use of two methods as reported 
by Offen & Kline (1973), Falco (1977) and Head & Bandyopadhyay (1978). 

The recent, remarkable progress in the use of computer techniques has enabled us 
to process large numbers of pictures rapidly and in detail and to display the results. 
Kinoshita (1981) used two cameras to photograph many coloured, neutral tracer 
particles in a flow illuminated by stroboscope light. He calculated the three- 
dimensional location of each particle from pairs of pictures and showed the three- 
dimensional distribution of velocity vectors as a bird's-eye view. Imaichi & Ohmi 
(1983) have developed a new system using image processing to estimate certain 
physical variables of two-dimensional flows. Utami & Ueno (1984) have proposed a 
method to obtain three-dimensional, quantitative information from a series of 
pictures of cross-sections of a turbulent flow, which proves the validity of and 
broadens the use of flow visualization. 

I n  this paper, we first develop the method of flow visualization and picture analysis 
proposed by Utami & Ueno (1984). Next, we calculate and display the distributions 
of such hydraulic quantities and properties as the three components of velocity 
vectors, the components of vorticity vectors, two-dimensional divergence, stream- 
lines and correlation coefficients. Then we propose the concept of a two-dimensional 
correlation coefficient and show that some results obtained using the prevailing 
correlation-analysis method do not always reflect the true characteristic properties 
of turbulence structures. Lastly, we present a conceptual model of coherent structure 
of turbulence, in which the characteristics of the multiple structure of turbulence 
are proposed. Terms concerning the coherent structure of turbulence such as low- 
speed regions, high-speed regions, ejections, sweeps, longitudinal vortices, horseshoe 
vortices and localized free-shear layers are explained clearly with our model. 
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FIGURE 2 .  Timing of the shutter opening and illumination. 

2. Experimental method and conditions 
A tracer method was used to visualize the successive flow patterns in horizontal 

cross-sections of a straight open-channel flow. The experimental channel (40 cm wide) 
was made of clear Plexiglas to allow visualization. Polystyrene beads 0.1-0.5 mm in 
diameter were used as the tracers. A horizontal cross-section was illuminated by a 
sheet of white light passed through a thin slit attached to the illuminator (figure i ) ,  
and a picture of the flow patterns in the section was taken by one of two still cameras 
mounted above the channel. Immediately afterwards, the sheet of light was shifted 
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FIGURE 3. ( a )  Rotary shutter; ( b )  image of the tracer trajectory. 
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direction 

FIGURE 4. Picture of flow patterns in horizontal cross-section 235 

a few millimeters by moving the slit, and a picture of the flow patterns in the newly 
illuminated cross-section was taken by the other camera. By repeating this procedure, 
successive pictures of the flow patterns in horizontal cross-sections of given heights 
could be taken. 

I n  order to understand experimentally the nature of turbulence, it  is considered 
most effective to follow turbulence structures in the Lagrangian manner and to 
observe development of the structures, as done by Corino & Brodkey (1969) and 
Smith (1978). Therefore, the cameras and illuminator were mounted on the same 
measuring frame and moved in the flow direction at a velocity nearly equal to the 
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mean velocity of the flow so that the development of the same flow structures could 
be followed. The heights of the illuminated cross-sections, the shift distance of the 
section and the shutter timing were all controlled by a personal computer, and any 
value could be set for each one. 

The experimental results obtained by alternately shifting the illuminated cross- 
section upward and downward every 0.2 s (figure 2 )  are presented and examined. The 
illuminated cross-section was 3 mm thick and about 9.3 or 4 mm from the channel 
bed. The camera shutter was open for about 0.17 s when the illuminated cross-section 
was stationary and was closed when it  was shifting. 

The two still cameras were set closely parallel on the measuring frame. The shutter 
of one was open when the illuminated cross-section was in the upper position, during 
which time the film was wound on the other camera, and vice versa when the 
illuminated cross-section was in the lower position. A circular disk shutter with three 
perforations of different size (figure 3 a )  rotated just in front of the cameras with the 
same shutter timing period (0.2 s) in order to mark the time on every image of the 
tracers' trajectories. If a tracer remained in the light all the time that the shutter 
was open, the image of its trajectory would have the pattern shown in figure 3(b ) .  
Therefore, using the time marks, we could judge how long the tracer stayed in the 
light and in which direction i t  moved. 

An example of the pictures obtained is shown in figure 4. The measuring frame 
was moved a t  a velocity of 8.05 cm/s. The average water depth around the cross- 
section being measured was 4.0 cm, the mean velocity 6.5 cm/s, the water tempera- 
ture 14.5 "C and the Reynolds number based on flow depth 2600. Friction velocity 
was 0.7 cm/s. 

3. Picture analysis 
3.1. Digitizing pictures and interpolating 

From the series of pictures obtained, six sheets (Nos 232-237) were digitized for 
further analysis. The pictures were enlarged as large as the original scale of the flow. 
The coordinates of both ends of every effective image of the tracer trajectories in the 
30 x 20 ern area of each picture were digitized by manual processing using a personal 
computer and a digitizer. Tracer particles that  came into the illuminated region after 
shutter opened or went out of the region before the shutter closed did not have the 
perfect image patterns shown in figure 3 ( b ) .  These images were not analysed. An 
example of the results, obtained for cross-section 235, is shown in figure 5; in i t  each 
line segment denotes a velocity vector and the small dot the starting point of that  
vector. 

The digitizer has a minimum resolution size of 0.1 mm, and an error of the same 
order can be added through manual processing. Accordingly, the total error in 
velocity is evaluated as 0.2 mm/0.17 s = 1.2 mm/s, which is 2% of mean velocity. 
Clearly, the longer the exposure time is (in this case 0.17 s), the smaller is the error. 
But this leads to  the period over which pictures are taken becoming longer, resulting 
in a dilemma for the experimenter using this method. 

Time and space ranges of the areas analysed in the illuminated cross-sections are 
shown in table 1 .  The x-coordinate is set in the main flow direction along the side- 
wall of the channel, the y-coordinate in the horizontal and cross-flow direction, and 
the z-coordinate in the upward direction. The x-, y- and z-components of the velocity 
vectors are denoted by u, v and UJ.  Thus, the flow pattern was analysed in the area 
between the right-hand sidewall and the centreline of the channel. The origin of the 
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/A. 

FIGURE 5. Original data on velocity vectors obtained by digitizing the picture of cross-section 
235. A line segment denotes a velocity vector and a small dot the starting point. 

Extent 
Cross- 
section Duration X Y z 

no. ( s )  (mm) (mm) (mm) 
232 0-0.173 0-300.00 0-200.00 2.5-5.5 
233 0.24.366 12.62-3 12.62 0-200.00 7.8-1 0.8 
234 0.44.573 25.24-325.24 c&200.00 2.5-5.5 
235 0.64.766 37.86-337.86 0-200.00 7.8- 10.8 
236 0.8-0.973 50.48-350.48 0-200.00 2.5-5.5 
237 1 .O-l. 166 63.10-363.10 0-200.00 7.8-10.8 

TABLE 1 .  Duration and extent of the cross-sections 

coodinat,e system for the areas analysed was shifted by 12.62 mm in the flow direction 
in every picture. This distance is the product of the average velocity, 6.31 cm/s, in 
the upper cross-section and the interval of 0.2 s between pictures. 

Cross-sections with even numbers are located at the average height of 4.0 mm 
above the channel bed, and sections with odd numbers a t  the average height of 
9.3 mm. The buffer layer, in this case, is about 1.0-5.0 mm above the channel bed. 
Accordingly, the two heights of the cross-sections are just inside and outside this layer. 

For convenient data-processing later, a method of interpolation was used to obtain 
velocity vectors at every mesh point with an interval of 4 mm in both the x- and 
y-directions. For example, the distribution of the interpolated velocity vectors in 
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FIGURE 8. Distribution of the spanwise components of velocity vectors (cross-section 235). 

cross-section 235, in which the average streamwise velocity in the cross-section has 
been subtracted from each vector, is shown in figure 6. This figure gives the velocity 
field viewed by the observer moving at the average velocity of the cross-section. 

3.2. Velocity distributions 

Distributions of the x- and y-components (u and v)  of the velocity vectors in 
cross-section 235 are shown in figures 7 and 8. As in figure 6, the x-component, u, 
represents the velocity from which the average velocity was subtracted. In figure 7,  
bands of low-speed and high-speed regions stretching in the flow direction alternate 
in the cross-flow direction. The average width of these regions is nearly equal to 100 

Kline & Falco (1980) defined a streak as a high- or low-speed (relative to the mean) 
region in the linear sublayer, which is highly extended in the flow direction. They 
also defined low-speed lifting as the outward movement of fluid in the low-speed 
streak to a point outside the linear sublayer. In our experiments, narrowband regions 
in which the flow velocity is lower than the mean are present in the sublayer, buffer 
layer and log region. Therefore, we call such regions low-speed regions, the upward 
movement of flow being particularly remarkable in the buffer layer and log region. 
We also observed a region in which flow is high speed relative to the mean and the 
flow direction tends to be downward; this we call the high-speed region. 

Interestingly, in figure 8 there is no pattern for the distribution of v that reflects 
the existence of low-speed regions; also, the longitudinal scale of each structure 
appears to be smaller than that of u in figure 7 .  

.b*. 
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FIGURE 9. Streamline patterns viewed by the moving reference frame (cross-section 235). 
(a) Reference frame at the average velocity of the flow; ( b )  1 cm/s slower. 
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FIGURE 10. Distribution of the vertical component of vorticity ((I) Cross-section 235; 
( b )  cross-section 234. 
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FIGURE 11. Distribution of two-dimensional divergence (cross-section 235). 

3.3. Patterns of streamlines 

Figure 9 shows patterns of streamlines in cross-section 235, obtained by drawing 
smooth curves tangential t o  each velocity vector. The patterns of streamlines are 
known to vary with the velocity of the observer. I n  this figure two patterns are given; 
one from a reference frame moving a t  the mean velocity of the flow, the other from 
a frame with a 1 cm/s slower velocity. Several characteristic patterns of streamlines 
are clear: the forming of vortex motions, converging, diverging and long stretching 
in a positive x- or negative x-direction. Streamlines diverging in the positive 
x-direction in figure 9 are present in the high-speed region of figure 7 ,  which suggests 
the existence of downward flow in the region. The streamlines converging in the 
negative x-direction are present in the low-speed region, suggesting the existence of 
upward flow in the region. 

3.4. Distribution of vorticity and divergence 

Using the data for the distribution of velocity vectors shown in figure 6, we calculated 
thedistributionofthez-componentsofvorticity, (&lay) - (atl/ax), incross-sections 235 
and 234 which are respectively a t  the heights of 9.3 mm and 4 mm from the channel 
bed, shown in figures 10(a, b). I n  this calculation the differences, dx and dy, are taken 
as 4 mm and the maximum error of velocity is 1.2 mm/s stated above. Accordingly, 
the probable maximum error of the vertical component of vorticity is 0.3 s-'. 

The absolute vorticity value is high where the vortex-motion flow patterns in 
figure 9 occur. Accordingly, regions with large, absolute vorticity values are believed 
to correspond t o  the cross-sections of vortex motions such as in the horseshoe vortex. 
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FIGURE 12. Definition sketch for the calculation of the cross-correlation coefficient. (a) Distribution 
of &(x, y) in cross-section m; (6) distribution of &(x, y) in cross-section n ;  (c) distribution of 
R,(m, n, x‘, y). 

The existence of similar patterns in both cross-sections suggests that they are the 
upper and lower cross-sections of the same vortex motion. 

Using the data for the distribution of velocity vectors, we calculated the distribu- 
tion of two-dimensional divergence (aulax) + (aw/ay), displayed in figure 11.  Similar 
error estimation with that of vorticity is applicable and the probable maximum error 
is 0.3 s-l. The divergence value is low where there are converging streamline patterns 
in figures 9(a ,  b ) ,  and high where there are diverging ones. 

4. Two-dimensional display of correlation coefficients 
4.1. One-dimensional cross-correlation coeficients 

Cross-correlation coefficients were examined for the distribution of the velocity 
component u along the line y = y in one cross-section and along the same line, y = y 
in another cross-section. 

The velocity at  point (x, y) in cross-section m is denoted by um(x, y)  and that in 
cross-section n by u,(x, y). Then the fluctuating components of velocity u along line 
y = y can be written 

where L is the lengthscale of analysis in the x-direction; in this case 30 cm. 
The cross-correlation function C,(m, n ,  x’, y)  is defined as 

where x’ is the shift distance, and the cross-correlation coefficient R,(m, n, x’, y) is 
defined as 

The definition sketch of R,(m, n, x‘, y) is given in figure 13. 
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FIGURE 14. Distribution of R,(233,235, x’, y) of the vertical component of vorticity between 
cross-sections 233 and 235. 

14 F L M  174 



41% T .  Utami a,nd T. Ueno 

The two-dimensional distribution of the cross-correlation coeficient 
R,(233,235, x’, y) between cross-sections 233 and 235, both located in the upper 
cross-section, was calculated arid is displayed in figure 13. The time lag between these 
two cross-sections is 0.4 s. The ridge line of the contours of the cross-correlation 
coefficient is shown by broken line. The bold, solid lines are contours on which 
R,(233,235, x’, y) equals zero. 

The cross-correlation coefficients of the distributions of the z-component of 
vorticity R,(233,235, x’, y)  in these cross-sections were calculated in the same way, 
and distribution being shown in figure 14. The values for the cross-correlation co- 
efficient of this figure are less than those of the velocity u. 

If the distribution of the cross-correlation coefficient of u around the x’ = 0 line in 
figure 13 is compared with that of the vorticity around the x’ = 0 line in figure 14, 
the value of the cross-correlation coefficient of u is seen to be relatively small at 
locations where that value of the vorticity is large, and vice versa. But, the organized 
part of the turbulence structure must have a large Correlation coefficient in either case 
when i t  is calculated using velocity or vorticity. 

The two-dimensional u-distribution (figure 7)  has a characteristic pattern com- 
posed of narrow longitudinal low-speed and high-speed regions arranged alternately 
in the cross-flow direction. The two-dimensional vorticity distribution (figure 10) has 
a similar pattern to that of u. But i t  should be noted that the z-component of vorticity 
generally has a large absolute value in areas in which the absolute value of u is small 
and vice versa. With this charact’eristic distribution of u, the vertical component 
of vorticity is highly dependent on aulay, which has a large absolute value in areas 
of small absolute value of u. That is the reason for the existence of a phase lag between 
the u- and vorticity distributions. 

The correlation coefficient obtained from data of u or vorticity over a short period is 
affected by these distribution characteristics. Generally, the correlation coefficient 
calculated from (1)-(5) tends to  have a small absolute value when the u- or vorticity 
variation has many zero-crossing points. I n  areas of small absolute value of u, the 
u-variation has many zero-crossing points along the y = y line and the vorticity 
variation has a large absolute value and less zero-crossing points, which results in 
small R, and large R,. That is why the correlation coefficients for u show an opposite 
tendency to those for vorticity. This contradiction springs from the weak point 
of the method of correlation processing, which occurs when it is applied to short- 
period data. 

4.2. Two-dimensional cross-correlatiovi, coeficients 

To avoid the above contradiction, it is better to  calculat,e the correlation coefficient 
for the distribution of velocity or vorticity in a two-dimensional area of appropriate 
width. A new definition of the cross-correlation coefficient between two cross-sections 
will be introduced, in which the correlation coefficient, is calculated from data at 
lattice points in band regions 3B wide and L long. The two-dimensional cross- 
correlation function, C,(m, n, x’, y )  is defined as 

’ 
C,(m, n, x’, y) = sy+B j r x ’ u & ( x , y )  uk(x+x’,y) dxdy, when x’ 2 0, 

3B(L-z’) y-B 

(6) 

u&(x- x’, y) uk(x, y) dx dy, when x’ < 0, 

(7) 

C,(m, n, LT’ ,  y) = 
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FIQURE 15. Distribution of the two-dimensional cross-correlation coefficient R,(233,235, x’, y) of 
velocity component u between cross-sections 233 and 235. 

The two-dimensional cross-correlation coefficient R,(m, n, x’, y) is defined as 

In the distribution of the velocity component u (figure 7). the average width of 
the bands of the low-speed and high-speed regions is about 1.5-1.7 cm. Therefore, 
we substituted 1.6 cm for 2B and 30 cm for L. The distribution of the 
two-dimensional cross-correlation coefficient R,(233,235, x’, y) of the velocity u 
between cross-sections 233 and 235 was calculated as shown in figure 15 and the 
cross-correlation coefficient R,(233,235, x’, y) of the z-component of vorticity as 
shown in figure 16. I n  these figures the bold solid lines are the contour lines on which 
R, or R, is equal to zero. The distributions obtained are not correct near the sidewall 
of the channel (y < 2 cm). 

There is no contradiction between figures 15 and 16 as there was between figures 
13 and 14. Consequently, the two-dimensional cross-correlation coefficient defined by 
(6)-( 10) is used hereafter to  examine the correlation between the two cross-sections. 

In  figures 15 and 16, the cross-correlation coefficients R, and R, on the ridge line 

14-2 
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FIQURE 16. Distribution of the two-dimensional cross-correlation coefficient R,(233,235, s', y) of 
the vertical component of vorticity between cross-sections 233 and 235. 
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FIGURE 17. Distribution of the two-dimensional cross-correlation coefficient R, (233 ,235 ,  d, y) 
of velocity component u between cross-sections 233 and 235. 



Coherent structure of turbulent open-channel flow 

R,>0.4 R,<-0.4 

415 

I I I I I I I I I I 1 1 
- 12 - 8  -4  0 4 8 12 

x‘ (cm) 

FIGURE 19. Distribution of the two-dimensional cross-correlation coefficient R,(233,237, J’, y) of 
velocity component u between cross-sections 233 and 237. 
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FIGURE 20. Spanwise distrihution of the shifting velocity (broken line) and locally averaged 
streamwise velocity C7,(y) (solid line). ( a )  Cross-section 235;  ( b )  cross-section 231. 

are larger than 0.7 and 0.6 respectively, which means that turbulent structures 
remain unchanged for a short period (0.4 s). I n  particular, the large value for the 
cross-correlation coefficient of vorticity means that the magnitude and arrangement 
of the vortex motions are maintained with little change. 

The ridge line for the distribution of the correlation coefficient is shown by the 
broken line in figures 15 and 16. I n  these figures displaying the distribution of the 
correlation coefficient, the origins of coodinates are set so that phase lag is equal to 
zero when turbulence structures are convected by the mean velocity in the cross- 
section. Therefore, in the area where the ridge line is on the right-hand side of the 
x' = 0 line, turbulence structures are convected a t  a larger velocity than the average 
velocity, and in the area where the ridge line is on the left, at  a smaller velocity. 

The distribution of the cross-correlation coefficient R,(233,235, x', y )  of the 
velocity component v between the two cross-sections is shown in figure 17.  The 
streamwise width of the band region where R, is positive is less than in figure 15. 
This is believed to  be due to  the difference in longitudinal scales for the velocity 
components u and v. 

The distribution of the cross-correlation coefficient R,(232, 234, x', y)  of the velocity 
component u between cross-sections 232 and 234, both of which are located in the 
lower cross-section ( z  = 4 mm), is shown in figure 18. The cross-correlation coefficients 
R, on the ridge line are larger than 0.6. Figure 19 shows the distribution of the 
cross-correlation coefficient R,(233, 237, x', y)  of u between cross-sections 233 and 
237, both of which are located in the upper cross-section. The time lag between these 
two cross-sections is 0.8 s. Even in this case, the value of R, on the ridge line is larger 
than 0.5. 

From these results, we conclude that the turbulence structure in the horizontal 
cross-section of the flow is convected downstream without large deformation over a 
short period. 

4.3. Shvt'ting velocity of the turbulence structure 

The ridge line of the distribution of the cross-correlation coefficient R,(233, 235, x', y )  
is shown by a broken line in figure 15, which denotes the spanwise distribution of 
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FIGURE 21. Distribution of the two-dimensional autocorrelation coefficient E1,(235,235, s’, y) of 
velocity component u (cross-section 235).  
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FIGURE 22.  Distribution of the two-dimensional autocorrelation coefficient R,(235,235.  s’, y) of 
velocity component 21 (cross-section 235) .  
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FIQURE 23. Distribution of the two-dimensional cross-correlation coefficient R,(234,235, x', y) of 
velocity component u between cross-sections 234 and 235. 
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FIQURE 24. Distribution of the two-dimensional cross-correlation coefficient R,(234,235, x', y) of 
the vertical component of vorticity between cross-sections 234 and 235. 
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the phase-lag distance of the u-distribution between cross-sections 233 and 235. The 
spanwise distribution of the local shifting velocity of turbulence structures is 
calculated from the phase-lag distance and is shown by the broken line in figure 20. 

By contrast, the distribution of the locally averaged streamwise velocity U,(y) is 
calculated as 

1 ?J+B L 
Um(Y) = 2BL J,-, J, U(X? Y)  dXdY, (11)  

where, B = 0.8 cm and L = 30 cm. The distribution of U,,,(y) obtained in cross- 
section 235 is shown by the solid line in figure 20(a).  

Distributions of the shifting velocity calculated as above for cross-sections 232 and 
234, and locally averaged streamwise velocities for cross-section 234 are shown in 
figure 20 (b). The distributions of the two kinds of velocities have wavy patterns, both 
having nearly equal local means and configurations of nearly equal phase. 

Therefore, we hypothesize that the structure of turbulence is frozen and convected 
at the local averaged velocity given by (11) .  

4.4. Autocorrelation coeficients of velocity distributions 
It is suggested above that the longitudinal scale of the velocity component u differs 
from that of v. Therefore, we calculated the autocorrelation coefficients of u and v 
in order to examine their scales. 

The autocorrelation coefficient is defined by (6)-( 10) in which n is substituted by 
m. The distributions of autocorrelation coefficients R,(235,235, x', y)  for u- 
fluctuations and R,(235,235, x', y)  for v-fluctuations in cross-section 235 are shown 
in figures 21 and 22, in which the average 2'-coordinates of the location of the 
downward zero-crossing of the autocorrelation coefficients are shown by broken lines. 
The value for the autocorrelation of u is 7.9 cm and that of v, 3.7 cm, which means 
that the longitudinal scale of u is approximately twice that of v. 

4.5. Inclination of turbulence structures 
The distribution of the cross-correlation coefficient R,(234,235, x', y) of u between 
lower cross-section 234 and upper cross-section 235 is shown in figure 23. The time 
lag between the two is 0.2 s. The origins of coordinates are set so that phase lag is 
equal to zero when turbulence structures are convected by the mean velocity in the 
cross-section. The ridge line of the distribution of the correlation coefficient is shown 
by a broken line, and its average 2'-coodinate by a dotted line. It should be noted 
that some phase lag exists throughout the width of the flow. The lag distance is 
believed to be due to the inclination of the turbulence structures, the average value 
being 15.2 mm and the angle of phase lag calculated from this value is 19.2". This 
angle is nearly equal to that measured by Brown & Thomas (1977), Kreplin & 
Eckelmann (1979), Nakagawa & Nezu (1981) and Ohnari, Saga & Saito (1985). 

The distribution of the cross-correlation coefficient R,(234,235, x', y) of the z- 
component of vorticity between cross-sections 234 and 235 is shown in figure 24. The 
ridge line and the average line also are shown. The average value for phase-lag 
distance is 7.3 mm and the average inclination 36.0". Note that this angle is twice 
as large as the angle inclination obtained from the velocity correlation analysis. 
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5. Three-dimensional properties of velocity distributions 
5.1. Calculation of the vertical component of velocity 

As our velocity data were obtained from pictures of horizontal cross-sections of the 
flow, we have so far no information on the vertical components of the velocity vectors. 
But if a hypothesis of frozen structures of turbulence is introduced, the effect of the 
time lag between two pictures of different height can be removed, and it is possible 
to recompose the three-dimensional distributions of u and 21 a t  certain times and 
to  calculate the vertical components of the velocity vectors using the continuity 
equation. 

I n  the preceding section we concluded that turbulence structures are convected at  
a velocity that is obtained by averaging all the velocity components u over the band 
area of the velocity distribution. We assume that velocity distributions are frozen 
on the longitudinal line and convected a t  the reported velocity. The band width used 
for the averaging was 1.6 em, as in the preceding section. 

On our assumption, the distributions of u and 21 along every longitudinal line in 
the upper cross-section were shifted in the negative x-direction by a distance of U ,  Dt, 
CJ, being the supposed convecting velocity and Dt the time difference (0.2 s) between 
the two cross-sections. Thus, the three-dimensional distributions of u and 11 near the 
channel bed a t  the instant the picture of the lower cross-section was taken could be 
obtained. The distribution of the vertical component w of a velocity vector could 
be obtained from numerical calculations using the continuity equation 

(12) 

But information on two-dimensional divergence, which appears in parentheses on 
the right-hand side of (12) is limited to the horizontal cross-sections a t  z = 4 and 
9.3 mm. It is clear that  two-dimensional divergence on the wall surface is zero. But 
the absolute value of two-dimensional divergence in the cross-section z = 4 mm is 
generally larger than that in the cross-section z = 9.3 mm, which suggests that 
assuming linear variation of two-dimensional divergence between the cross-sections 
z = 0 and 4.0 mm is not suitable. Consequently, we assume that on the wall surface 
the two-dimensional divergence is zero, on the outer boundary of the viscous sublayer 
( z  = 1 mm) the divergence value is equal to that in the z = 4 mm cross-section and 
that the value of two-dimensional divergence varies linearly between each cross- 
section. Therefore, three-dimensional distributions of the three components of the 
velocity vectors could be obtained every 0.4 s. 

As an example, the resulting distribution of the vertical component of velocity 
in the cross-section at z = 9.3 mm, which corresponds to the data for 235, is shown 
in figure 25. The calculated distributions of P L  and 21 in the upper horizontal 
cross-sections are almost the same as the original distribution because time passed 
(0.2 s) is very short; therefore they are not shown here. 

The accuracy of such distributions of the vertical component of velocity is inferior 
to that of horizontal components because the calculation is based on the hypothesis 
of frozen turbulence and the approximate distribution of two-dimensional 
divergence. 

5.2. Distribution of instantaneous Reynolds stress 

We define ejections, sweeps and interactions after the four-yuadrant method of 
Wallace, Eckelmann & Brodkey (1972). Areas with large positive w-values in figure 
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FIGURE 26. Distribution of the instantaneous Reynolds stress (cross-sections 225) .  
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FIGURE 27. Distribution of the T-function of -u (x ,  y) and ~ ( s ,  y) (cross-section 235). 

25 nearly coincide with the areas of negative U-values in figure 7,  and those of negative 
w-values, with those of positive U-values. 

Using the three-dimensional distribution of velocity vectors we could calculate the 
distribution of instantaneous Reynolds stress -uw. One set of results is shown in 
figure 26. In  the regions of positive Reynolds stress sweeps or ejections occur and 
in the regions of negative Reynolds stress, interactions occur. The former occupies 
much larger areas than the latter. This figure also shows that most of the contributions 
to the instantaneous Reynolds stress of large absolute value are made by sweeps or 
ejections; but i t  gives no information on the individual contributions of these 
ejections or sweeps. 

5.3. Distributions of ejections and suieeps 
We now introduce the T-function by which we could estimate individual contribu- 
tions to Reynolds stress by ejections and sweeps. The T-function is defined as 

(13) 

(14) 

(15) 

where, p ( x ,  y) and q(x,  y) are the two-dimensional functions of x and y normalized by 
their standard deviation and Tpq(x, y) is the T-function of p ( x ,  y) and q ( x ,  y). 

The functions - u(x, y) and uj(r, y), normalized using their means and standard 
deviations, were substituted for p ( x ,  y)  and q(r, y)  to calculate the T-function 
T-u, Jx, y). Results for cross-section 235 are shown in figure 27. Based on the 
definition of the T-function, we can say that this figure shows a close correlation 

TP&, y) = p ( x ,  y) q ( x ,  y) when p(x, y) 2 0. q(r, y) >, 0, 

Tpq(x, y) = -P(X. y) q@, y) when p ( x ,  y) < 0. p(x, y) < 0, 

Tpq(x, y) = 0 when p ( r ,  y) q(r. y) d 0, 
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between the distribution of the instantaneous value of -u(s, y) and that of W(X, y). 
Moreover, in a region with positive T-u, u,(x,  y)-values, in which u(x, y) is negative 
and zo(x,y) positive, ejections occur; and, in a region with negative TPu, w(x, y)- 
values, in which u(s, y)  is positive and ui(xy) negative, sweeps occur. The T-function 
is 0 in an area of interaction. At the same time, the absolute value of the T-function 
is large in an area of strong ejections or sweeps. 

In this calculation, the mean values u,(y) and zci,(y) of u(x, y)  and ~ ( x ,  y), and the 
standard deviations urmS(y) and ~q.,~(y) are necessary for the normalization. Taking 
into account that  the u-distribution is composed of narrow bands of high-speed and 
low-speed regions arranged alternately in the spanwise direction and that the average 
width of these bands is nearly 1.6 cm (about 100 u,/v), we used the standard 
deviation and mean values of ~ ( x ,  y)  and ~ ( x ,  y)  in the band area between y = y- B 
and y = y + B  but with u', substituted by 0. Thus, 

where B = 1.6 ern and L = 30 cm. 
When figure 27 is compared with figure 7, as is necessary for the definitions of 

sweeps and ejections, ejections are seen in low-speed regions and sweeps in high-speed 
regions. 

5.4. Distributions of vorticity ziectors 

The conditional-sampling method used with the phase-averaging processing of probe 
data has made i t  possible to  obtain the distribution of vorticity in some kinds of flow. 
Browand & Weidman (1976) gave the distribution of vorticity in a two-dimensional 
mixing layer. Williams, Fasel & Hama (1984) gave the three dimensional vorticity 
field in the boundary-layer transition process. The three-dimensional distributions 
of the three components of velocity that we obtained through flow visualization 
enabled us to calculate the distributions of the three components of vorticity in the 
turbulent boundary layer. 

(i) Distribution of the vertical component of vorticity 

The distributions of the vertical component of vorticity w, in cross-sections 235 
and 234 have been calculated and displayed in figures 10(a, b). The positive region 
of the distribution of the vertical component of vorticity is thought to be the 
horizontal cross-section of a right-side leg (facing streamward) and a negative region 
to be a left-side leg (facing streamward) of a pair of vortex motions. Accordingly, the 
zero-vorticity line, which is the upper (larger-y) boundary of the region of positive 
vorticity and is, a t  the same time, the lower (smaller-y) boundary of the region of 
negative vorticity, represents the interjacent line of a pair of vortex motions. These 
interjacent lines are shown by thick solid lines in figure 10. 

There are other zero-vorticity lines that are the upper boundary of the negative 
vorticity region and are, a t  the same time, the lower boundary of the positive 
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FIGURE 28. Distribution of the streamwise component of vorticity in the cross-section between 
cross-sections 234 and 235. 

vorticity region. These lines pass through the high-speed regions of velocity u. For 
convenience, we call these two kinds of lines interjacent and high-speed lines. Most 
regions with large absolute values for the 2-component of vorticity arc close to the 
interjacent lines and somewhat distant from the high-speed lines. But there are some 
places [e.g. (14, 11 cm), (16, 14cm), (16, 18cm), (10, 8 c m )  and (1, 16cm) in 
figure 10a] where regions of large absolute vorticity values with different signs are 
close together on the high-speed line; here, sweeps are strong as shown in figure 27. 

(ii) Distribution of the streamwise component of vorticity 
The distribution of the streamwise component of the vorticity vectors w, in the 

horizontal cross-section was calculated and is shown in figure 28. Here, av/& was 
obtained from the vertical difference in velocity components between the upper and 
lower cross-sections which are vertically 5.3 mm (31 viscous length) apart. But aw/ay 
was calculated from the distribution of w in cross-section 235. Accordingly, the 
distribution obtained for the s-component of the vorticity w, does not have good 
resolution and should be interpreted as being the distribution in the horizontal 
cross-section between cross-sections 234 and 235. 

Interjacent lines in cross-section 234, which are given in figure l O ( b ) ,  are shown 
by solid lines in figure 28 and those in 235, which are given in figure 10(a), by broken 
lines. If an individual vortex motion has a smooth configuration with its head raised 
in the streamwise direction, the regions of positive w, and w, must nearly coincide, 
as must the regions of negative w, and w,. Actually, many of the positive regions 
of w, are located just below (smaller-y) the interjacent line and the negative regions 
just above (larger-y) them. That is the same tendency as for the distribution of 0,. 
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FIGURE 29. Distribution of the spanwise component of vorticity in the cross-section between 
cross-sections 234 and 235. 
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FIGURE 30. Distribution of the horizontal component of vorticity vectors in the cross-section 
between cross-sections 231 and 235. 
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FIGURE 31. Patterns of two-dimensional vortex lines in the cross-section between cross-sections 
234 and 235. 

(iii) Distribution of the spanwise component of voriticity 
The distribution of the spanwise component of vorticity wy in the horizontal 

cross-section is given in figure 29. The interjacent lines of cross-section 234 are shown 
by solid lines and of 235 by broken lines. The accuracy of the calculation of the 
vorticity component is interpreted as being the same as that of the x-component; 
but it is apparent that w y ,  on the average, is 4 to 5 times as large as the x-component 
of vorticity in this cross-section. 

This figure shows many interjacent lines passing near the ridge of the wy 
distribution, which suggests that every vortex filament that has been loaded with 
large vorticity near the wall is raised upward near the interjacent lines. It is noted 
that the large peak value of wy is located near the upstream end of the interjacent 
lines, which suggests the existence of the localized free-shear layer observed by 
Corino & Brodky (1969) and by Blackwelder & Eckelmann (1979). 

(iv) Patterns of two-dimensional vortex lines 
The distribution of the horizontal component of the vorticity vectors in the 

horizontal cross-section, which is defined as w;i+w;j (where i is the unit vector 
in the streamwise direction and j that in the spanwise direction), is shown in figure 
30. Patterns of two-dimensional vortex lines obtained by drawing curves tangential 
to the horizontal component of vorticity vectors are shown in figure 31. Interjacent 
lines also are drawn in this figure; but because it is the horizontal cross-section of 
the flow field, we cannot display the three-dimensional configurations of the vortex 
lines as Moin & Kim (1985) did. Two-dimensional vortex lines are seen convex to 
the streamwise direction near the interjacent lines, indicative of the existence of 
horseshoe vortices with their heads raised near those lines. 
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FIQIJRE 32. Side view of a drawing of a turbulence structure showing double-structure 
characteristics, by Head & Bandyopadhyay (1981). 

6. Discussion 
An integrated examination of the results of our analyses convinced us that the 

elementary unit of the coherent structure of turbulent flow near the wall is a horseshoe 
vortex with two legs. The horizontal cross-section of the right leg (facing streamwise) 
has generally positive x- and z-components of vorticity and the horizontal cross- 
section of the left leg has negative ones. 

6.1. Characteristics of the double structure of turbulence 
In $4.5 we obtained 19.2" as the average inclination angle of turbulence structures 
from the phase lag of the u-fluctuations between cross-sections 234 and 235, and 36.0" 
from that of the vorticity fluctuations. This appears to  be contradictory, but brings 
to mind the conceptual model proposed by Head & Bandyopadhyay (1978, 1981) 
suggesting the double structure of turbulence which has two characteristic angles. 

Head & Bandyopadhyay provided the conceptual picture of the turbulence 
structure shown in figure 32 based on measurements with hot wires and flow 
visualization over the entire widths of turbulent boundary layers. They explained 
the existence of small-scale hairpin vortices on the upstream face of the large-scale 
motion and showed that  individual hairpin vortices incline to the wall a t  a 
characteristic angle (45") and that their tips lie on a line that makes a smaller angle 
than the individual vortex. Smith (1984) proposed a similar model for the turbulence 
structures in the near-wall region using flow visualization of open-channel flow, in 
which individual hairpin vortices make an  average angle of 45" with the wall surface 
and the tips of these vortices are aligned on a line with an angle of 15"-30° to  the 
wall surface. It is noted that the two angles determined by Head & Bandyopadhyay 
through the measurement across the entire widths of boundary layers and those by 
Smith through flow visualization of an inner region nearly coincide respectively. Their 
hairpin vortex is thought t o  correspond to  our horseshoe vortex. 

The correlation coefficient of the u-fluctuation, which has been defined in the 
preceeding section, does not always reflect the characteristics of an individual vortex ; 
it depends on the whole structure of a group of vortices because the velocity field 
is determined by the integrated forces of individual vortices on the bases of the 
Biot-Savart law. Consequently, the angle obtained from the phase lag of the 
u-fluctuation does not give the average inclination of an individual vortex, but rather 
the average inclination of the large-scale motion of turbulence. 

In  fact, the inclination angle of 18", obtained by Brown & Thomas (1977) through 
correlation analysis of u-fluctuations is in good agreement with the outline of a smoke 
picture visualized by Falco (1977). Kreplin & Eckelmann (1979) showed t,hat t,he 
front of the turbulence structure makes an angle of 4.7" with the wall in the viscous 
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FIGURE 33. Arrangement of rross-sections of horseshoe vortices (fine solid lines with arrows showing 
the direction of rotation), large-scale vortex motions (thick solid lines with arrows) and interjacent 
lines (thick solid line) (cross-section 235). 

sublayer (z+ < 5) and the angle increases with the distance from the wall to the value 
of 10'-15" a t  the height of a+ = 40, which is nearly equal to the height of our 
observation. Nakagawa & Nezu (1981) determined the angle of the maximum 
correlation line to  the wall surface to be 15O-20" through the space-time-correlation 
analysis of u-fluctuations obtained by hot-film measurement for the turbulence 
structure in the near-wall region in open-channel flow. These angles nearly coincide 
with the angle of 19.2' obtained through our correlation analysis of zc-fluctuations. 

By contrast, i t  is natural to think that the inclination angle of 36" obtained through 
our vorticity-correlation analysis gives the average inclination angle of an individual 
vortex because vorticity fluctuations are believed to correspond to individual 
vortices. This angle is nearly equal to that presented by Head & Bandyopadhyay 
and Smith. 

Concerning the distribution of the a-component of vorticity (figures 10a, b) ,  the 
areas with large, absolute vorticity values (areas in which Iw,I > 1.0 (s-l) are shown 
by hatching or dotting) stretch in a streamwise direction and contain from one to  
four peaks of vorticity, which also suggests a double structure of turbulence : the areas 
with large absolute vorticity values correspond to large-scale vortex motion and each 
local peak of vorticity to the centre of an individual horseshoe vortex. Therefore, the 
double structure of turbulence is shown by our visualization data also. 

Around the centre of an individual cross-section of a horseshoe vortex, the vorticity 
must be concentrated and, at the same time, streamline patterns must be focal, spiral 
or wavy when the flow field is observed from a reference frame moving a t  a velocity 
just, or nearly, equal to  that a t  the point. We have established a practical 
arrangement for the cross-sections of vortex motions in cross-section 235 (shown in 
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figure 33) based on our conceptual model of the double structure of turbulence, the 
distribution of vorticity (figure 10a) and the patterns of streamlines (figures 9a,  b ) .  

In figure 33, the areas enclosed by fine solid lines show the posited cross-sections 
of the legs of horseshoe vortices. These lines were drawn to encircle the local peak 
of vorticity distribution around which streamlines have the characteristic patterns 
described. Arrows denote the direction of rotation. 

The cross-sections of the large-scale vortex motions are drawn with thick, solid lines 
that are nearly the same as the f 1 .O (s-l) contour lines of the z-component of vorticity. 
The axes of the large-scale vortex motions make a smaller angle with the wall than 
that of horseshoe vortices and so the horizontal cross-section of large-scale vortex 
motions are stretched in the flow direction. These large-scale vortex motions are 
considered equivalent to what Blackwelder & Eckelmann ( 1979) called a longitudinal 
vortex, and so we shall call them longitudinal vortices hereafter. Generally, each 
cross-section of a longitudinal vortex contains a few cross-sections of horseshoe 
vortices. In  some cases. a horseshoe vortex exists alone. Most longitudinal vortices 
have counterparts with the opposite sign of vorticity as pointed out by Blackwelder 
& Eckelmann. 

The number of horseshoe vortices found to compose a longitudinal vortex is close 
to that reported by Smith (1983), who used the hydrogen-bubble method for 
open-channel flow. Head & Bandyopadhyay (1981) reported that the arrangements 
and configurations of horseshoe vortices depend on the Reynolds number. Note that 
our reported arrangement of vortex motions is that existing under flow conditions 
with a Reynolds number of 2600. 

6.2. The scale of turbulence structures 
In 0 4 we reported that the average characteristic scale of u-fluctuation, which nearly 
corresponds to a quarter of a wavelength, is about 7.9 cm and that of v-fluctuations 
3.7 cm. The problem remains of why the scale of u-fluctuation differs from that of 
v-fluctuation and which denotes the true scale of the turbulence structure. 

In figure 34, the lines of the zero autocorrelation coefficient of the u-fluctuation 
in figure 21 are shown by solid lines and those of the v-fluctuations in figure 22 by 
broken lines. In  this figure two kinds of ranges can be distinguished : range A, in which 
y = 2-3, 5.5-6.5, and 13.5-20 cm; and range B, in which y = 3-5.5, 6.5-13.5 cm. 

In the A-range, the average x’-coodinate, about 5 cm, of the zero-crossing of the 
correlation coefficients of u-fluctuation is nearly equal to that of the a-fluctuation; 
accordingly, the wavelengths of the u- and v-fluctuations are both about 20 cm. By 
contrast, in the B-range, x’-coordinates of the zero-crossing of the correlation 
coefficient of the v-fluctuation are about 2.5 cm; accordingly, the wavelength of the 
v-fluctuation is about 10 cm. But. in the B-range, the wavelength of the u-fluctuation 
is much larger and more variable. 

This suggests that  turbulence structures have a unit structure with a characteristic 
scale of about 10 cm and the wavelength of velocity fluctuations is determined by 
the arrangement of the unit structures. Note that this scale, 10 cm, is nearly equal 
to the average scale of the longitudinal vortex shown in figure 33. Therefore, the unit 
structure which determines the wavelength of velocity fluctuations is considered to 
be a longitudinal vortex. 

The practical arrangement of the cross-sections of longitudinal vortices in figure 
33 show that there are a few typical arrangements (figure 35). Type A (figure 35a) 
is the most typical type of arrangement in which longitudinal vortices are arranged 
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FIGUKE 34. Lines of zero autocorrelation coefficient for the u-fluctuation (solid lines) and the 
2)-fluctuation (broken lines). 

in a st,aggered array. I n  type B, groups of longitudinal vortices are arranged in a 
staggered array, each group being composed of TI longitudinal vortices arranged on 
a line. The case of n = 3 is shown in figure 35 ( b ) .  When n = 1, type A coincides with 
type B. Type C: is the case when the type-A arrangement is somewhat distorted in 
t'he spanwise direction. For simplicity, we assume that the cross-sections of the 
longitudinal vortices are nearly equal in shape> and sc,ale (the streamwise scale is 
denoted by d )  and t,hat the structure of turbulence is frozen and convected a t  the 
velocity (1,. 

Using these simplifying assumptions, we obtain results from probe measurements 
at a fixed point for two components of velocity. A velocimeter measures the 
distributions of u and '11 (e.g. on the line shown in figure 35), the variation of the sign 
of the measured velocity components 'u and 11 being shown at the bottom of each 
figure. The wavelengths A, and A, of the u- and v-fluctuations obtained through 
autocorrelation analysis are evaluated as the average length of a combination of 
series of positive and of negative signs, and are shown a t  the bottom of the figure. 

I n  cases of the A-type we get A ,  = 2d and A, = 3d and in the €3-type, A, = 2nd 
and A,  = 2nd / (2n  - 1 ) .  I n  the latter type, the wavelength of the u-fluctuation A ,  
varies with n ,  but the wavelength of the ,>-fluctuation A, is almost constant and 
nearly equal to d when n is larger than 2. I n  the case of type C, A, = 4d and A, 
is nearly equal to  d.  This suggests that in t'he A-range of figure 34, the vortices are 
arranged in the A-type and, in the B-range, the arrangement in the region near the 
sidewall is of the B-type, and that far from the sidewall of the Ctype. 

Our conclusions about the scale of turbulence structures and the method of 
measuring them are: (i) The wavelength A, of the u-fluctuations obtained through 
autocorrelation analysis of velocity data by fixcd-point measurement sometimes 
differs from the wavelength A, of the v-fluctuation obtained by the same method 
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FIGURE 35. Typical arrangements of cross-sections of longitudinal vortices (solid lines with arrows 
showing the direction of rot,ation) and scale estimation of u- and a-fluctuation in the horizontal 
cross-section of the flow. ( a )  Type A ;  ( b )  type B: ( c )  type C. 

during the same interval. (ii) The wavelength A, does not always reflect the true 
lengthscale of a turbulence structure; i t  depends on the arrangement of the 
longitudinal vortices. (iii) But, the wavelength A, generally reflects the lengthscale 
of a turbulence structure, A, being equal to d (in the B-range) or to 2d (in the A-range). 
(iv) Therefore, i t  is better to use the v-data to determine the scale of the longitudinal 
vortex through correlation analysis. (v) Note that the above discussion is based on 
data for a short period. If we use sufficiently long-time data, in which the arrangement 
of turbulence structure of A-, B- and C-type will be contained, we shall obtain a value 
between d and 2d for an average wavelength of v-fluctuation. It is important to  
determine the appropriate sampling period for the fixed-point measurement. 

Clearly, from the above estimation of the A-type of arrangement, the average 
streamwise scale of a longitudinal vortex d is half the average wavelength, estimated 
as 20 cm from figure 34. Therefore, the average streamwise scale of a longitudinal 
vortex d is 10 cm in a cross-section of I = 9.3 mm, a scale of the order of 600 v/u* 
a t  z u J v  = 56.3. Actually, in figure 33, the streamwise scale of a longitudinal vortex 
is distributed between 4 and 14 em, the average being about 10 cm. It should be noted 
that above-stated scale of longitudinal vortex is that  of the horizontal cross-section 
of the vortex, and the length of axis of the vortex is far larger. I n  Hreplin & 
Eckelmann (1979) i t  is about 1200 v/u,. 
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M'IQTJRE 36. Arrangement of the double structure of vortex motion superposed on the 
distribution of velocity vectors (cross-section 235). 

0 '  1 I 1 I I I I I I I I I I I I I 
0 4 8 12 16 20 24 28 

x (cm) 
FIGURE 37. Arrangement of the double structure of vortex motion, interjacent lines (thick solid 
lines), ejections (hatched area) and sweeps (dotted area) (cross-section 235). Large dots represent 
the localized acceleration regions. 
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By contrast, the streamwise scale of an individual horseshoe vortex is 3-5 cm, that 
is 180-300 v/u*. Cantwell (1981) summarized the average scales of various vortices 
and reported that the longitudinal scale of outer-flow vortices is of the order of 
200 v/u*. But, in the distribution of the z-component of vorticity (figure lo),  we 
counted an average of 10-11 legs of longitudinal vortices in the spanwise interval 
y = 3-20 cm. Therefore, we estimated the average spanwise scale of a longitudinal 
vortex as 1.6 em, that is of the order of 100 v/u*.  

6.3. Streak structures, ejections and sweeps 
Figure 36 shows the distribution of the velocity vectors shown in figure 6 superposed 
on the arrangement of double-structural vortex motions (figure 33). I n  this figure, 
the mean streamwise velocity in the cross-section is subtracted from each velocity 
vector. Therefore, the low-speed region is the region in which velocity vectors 
point in the upstreamwise direction, and in the high-speed region they point 
downstream. Low-speed regions are located between two legs of a pair of longitudinal 
vortices and high-speed regions between two neighbouring pairs of longitudinal 
vortices. 

As stated, the area of ejection in the horizontal cross-section of the flow field is 
shown by the area of positive T-function (figure 27), the area of sweep by the area 
of negative T-function and the magnitude of the ejection or sweep is given by the 
absolute value of the T-function. The range in which the T-function has an  absolute 
value larger than 0.5 is shown in figure 37, on which the arrangement of the 
double-structural vortex motions in figure 33 is superimposed. This figure clearly 
shows that ejections are generated in the narrow region between the two legs of a 
horseshoe vortex and that sweeps are generated between two pairs of longitudinal 
vortices. 

6.4. Characteristics of the localized accelerating region 
The conditional-sampling techniques used for probe measurements have made an 
important contribution to the determination of the coherent structure of turbulence. 
In  data analysis using conditional-sampling techniques, special attention has been 
paid to the localized accelerating region of the probe-measurement data. We here 
examine the structural features in, and around, the region and discuss the VITA 
technique using our flow-visualization data. 

Localized accelerating regions are found in the distribution of the x-component 
of velocity (figure 7)  around the points (5, 10 cm), (4, 15 cm), (7 ,  9 cm), (18, 1 1  em), 
(19, 7 cm), (19, 15 cm) and (22, 18 em). As an example, we shall examine the distribu- 
tions of u and uj around the point (18, 1 1  cm). The longitudinal distributions of u 
and w on the lines y = 11.5, 11.25, 11.0, 10.75 and 10.5 ern in the horizontal 
cross-section 235 are given in figure 38. Note that u decelerates in the x-direction 
around point (18, 11 cm), and around that point U J  generally is of opposite sign to 

If we measure the U -  and w-fluctuations a t  a fixed point by the probe method, and 
assume that the velocity distribution is frozen in the horizontal cross-section, the 
configuration of the velocity fluctuation in figure 38 is obtained, but the abscissa x 
is replaced by t ,  denoting time, in the direction opposite to that of x. The 
configurations of the u- and u7-fluctuation obtained are analogous to the typical u- 
and uj-fluctuation patterns with the passage of time obtained through the VITA 
technique by Blackwelder & Kaplan (1976) and by Johansson & Alfredsson (1982) 
and through the pattern-recognition technique by Wallace, Brodkey & Eckelmann 

U .  
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y = 11.50cm 

11.25 cm 

11 .OO cm 

10.75 cm 

10.50 cm 
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FIGURE 38. Longitudinal distribution of u (solid line) and w (broken line) on the lines y = 10.5, 
10.75, 11  .O, 11.25 and 11.5 cm (cross-section 235). 

(1977). Thus, the local flow patterns that we are concerned with are the patterns 
detected through the VITA and pattern-recognition techniques. 

The location of the above seven points are plotted in figure 37 which shows the 
arrangements of horseshoe vortices and of ejections and sweeps. All seven points, 
denoted by large dots, are upstream end points of interjacent lines. Note that in figure 
37 strong ejections exist at locations just downstream of these points, which coincides 
with Tiederman's statement (see the discussion in Kunen, Ooms & Vink 1984) that 
the VITA technique captures acceleration events that occur a t  the ends of bursts. 

By contrast, figure 37 shows that there are strong sweep regions upstream of the 
point in question. Individual sweep regions, however, are arranged somewhat 
irregularly with respect to this point; some are fairly far from the point, some are 
near i t  and some are slantingly upstream of it. If the VITA technique is applied to 
such a flow, ejection events should be detected clearly, but the sweep not so clearly 
because of the cancelling in the process of ensemble averaging. Actually, in the 
experimental study by Alfredsson & Johansson (1984), the contribution of sweep 
events to Reynolds stress was not revealed using the VITA technique. 

Hama & Nutant (1963) introduced a hydrogen-bubble method with which they 
observed the transition mechanism. Since then, there have been a number of studies 
using the hydrogen-bubble method that have revealed the coherent structure of 
turbulence [e.g. Kline et al. 1967; Kim, Kline & Reynolds 1971 ; Offen & Kline 1974; 
Grass 1971; Smith 1978, 19841. Through these studies some typical patterns of 
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Horseshoe vortex 

Vortex filament 

Longitudinal vortex 

Horseshoe vortex 

M 
di 

Longitudinal vortex 

Main flow 

FIGURE 40. Conceptual model representing ( a )  the formation and developing stages of a horseshoe 
vortex, (6) the overall structure of turbulence in the wall region in the fully developed stage, and 
( c )  the side view. Solid lines denote vortex filaments in (a )  and tubes in ( b )  and ( e ) ,  horseshoe vortices. 

hydrogen-bubble tracers showing the coherent structure of turbulence have been 
obtained. 

What pattern of hydrogen-bubble tracers would appear if this method were applied 
to the flow that we have examined? Timelines and streaklines, calculated on the 
assumption that the velocity distribution in the horizontal cross-section is frozen and 
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the bubble-generating electrode is placed at x = 12 ern in horizontal cross-section 
235, are given in figures 39(a, 6 ) .  Low-speed and high-speed regions clearly are 
generated. These regions coincide with those in figure 7 which gives the distribution 
of the x-component of velocity. I n  this figure, four of the seven points representing 
the localized accelerating regions are visible and are enclosed by circles. The timelines 
are grouped very closely around these points because of localized deceleration in the 
x-direction. 

6.5. Conceptual model of the coherent structure of turbulence 
We propose a conceptual model of the coherent structure of turbulence based on the 
results presented here. A turbulent open-channel flow is characterized by the 
existence of a high-shear layer (viscous sublayer) with high vorticity near the channel 
bed. If disturbances are experienced by part of it, the high-shear layer will be 
deformed slightly into wavy patterns, and the existing vorticity will be concentrated 
locally. Once local concentrations of vorticity are formed, they entrain the nearby 
vortex filaments in the sublayer and become stronger. At the same time, they are 
lifted up (Biot-Savart law) and elongated by mean flow. Thus, the high vorticity 
originating in the sublayer is organized to form a horseshoe vortex in the buffer layer. 
In  the sublayer very close to  the wall, the flow structure is almost two-dimensional 
and the existing large vorticity does not form a vortex. A conceptualized picture of 
a horseshoe vortex in its formation stage is given in figure 40(a), in which vortex 
filaments are denoted by solid lines. 

A horseshoe vortex is stretched by the main flow and, a t  the same time, entrains 
others, as well as vortex filaments. A newly entrained horseshoe vortex is also 
stretched by the main flow and spirals around an  original horseshoe vortex. This 
process is repeated again and again and horseshoe vortices are organized to form a 
larger-scale vortex motion. The conceptualized three-dimensional configuations and 
the side view of the organized vortex motions in the fully developed stage are shown 
in figures 40 ( b ,  c )  in which horseshoe vortices are denoted by vortex tubes. The upper 
part of the organized horseshoe vortices forms a bundle of spiral vortex tubes, as 
shown by the broken lines in the figure. It is this bundle of vortex tubes that we have 
described as a longitudinal vortex. As stated, longitudinal vortices generally have 
counterparts with the opposite sign of vorticity. But horseshoe vortices do not always 
have a counterpart because they are deformed in the process of the entrainment. 

Our conceptual model is composed of three phases of vortex motions: vortex 
filaments, horseshoe vortices and longitudinal vortices. Through the above-stated 
process, these vortices are deformed and stretched, which is also the process of energy 
dissipation. 

I n  our conceptual model, in the buffer layer the axes of the horseshoe vortices 
entrained in the longitudinal vortex are not parallel to the axis of the longitudinal 
vortex, rather they spiral around the axis. I n  particular, in the narrow regions 
interjacent between the two legs of a pair of longitudinal vortices, the axes of 
horseshoe vortices form large angles with the wall surface as shown in figure 40(c) .  
Consequently, the fluid in the interjacent region is driven in the upstream, upward 
direction (Biot-Savart law). This is the mechanism for upward and upstream motion 
in the ejection region. I n  a region surrounded by two pairs of longitudinal vortices, 
the fluid is driven downward and downstream (Biot-Savart law); this is the 
generating mechanism of sweeps. 

Once sweeps occur, a thin but high-shear layer is formed locally over the wall 
surface. This high-shear layer will trigger the new series of vortex formation described 
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above. The strong upward motion near the upstream end of the organized vortex 
motions lifts the high-shear layer, giving rise to a localized free-shear layer and an 
inflexional distribution of velocity. 

As a result, this generating mechanism organizes a staggered arrangement of 
longitudinal vortex motions. The staggered pattern observed by Falco (1981), who 
used flow visualization by smoke, is believed to be this stage of development in 
turbulence structures. His tracer is believed to have flown near the wall with the result 
that  the flow structures around the roots of the longitudinal vortex motions are 
clearly visualized. Therefore, the vortex model proposed by Falco is believed to 
represent the effect of the right leg (facing streamward) of a pair of longitudinal 
vortices and the left leg of another pair. He also proposed a pocket surrounded by 
these vortices, which must be the visualized sweep whose generating mechanism is 
given above. 

The level of cross-section 235 is shown by the broken line in figure 40(c). Our 
conceptual model shows that the horizontal cross-section of a longitudinal vortex 
contains some cross-sections of horseshoe vortices. That is the reason why the 
distribution of the vertical component of velocity along the interjacent line is wavy 
as shown in figure 38. 

By combining the results obtained by correlation analysis with this conceptual 
model of turbulence structure, we obtain quantitative information about organized 
vortex motions. The average streamwise scale of the cross-sections of longitudinal 
vortices is 10 cm (600 Y / u * ) ,  and the spanwise scale is 1.6 cm (100 v /u*) .  The 
streamwise scale of an individual horseshoe vortex is 3-5 em, that is 180-300 v/u*. 
Longitudinal vortices, on average, make an angle of 19' with the wall. By contrast, 
horseshoe vortices make an angle of 36". 

Our proposed model of the coherent structure of turbulence has the following 
characteristics : (i) It is a multi-layered structure. In  the sublayer, there is a high-shear 
layer that  is almost two-dimensional. In  the buffer layer, the axes of the horseshoe 
vortices spiral around the axis of the longitudinal vortex generating three- 
dimensional, complex flow patterns such as ejections, sweeps and localized free-shear 
layers. (ii) It has characteristics of a multiple structure. Vortex filaments of fine scale 
are organized to form a horseshoe vortex, and one or more horseshoe vortices make 
longitudinal vortex. (ii) Order is coexistent with disorder. There is some order in the 
mechanism of vortex formation, in the arrangement of vortices and in their scale 
distribution, some of which is revealed; but, there is also disorder in every part. (iv) 
It is self-conserving of its coherent structure. The energy in the mean flow is given 
to coherent structures through sweeps driven by existing longitudinal vortex 
motions. These sweeps give rise to new series of organized vortex motions. 

We thank Professor H.  Imamoto and Dr R. Kinoshita for their most helpful advice 
about and encouragement of our investigations. 
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